题目内容
【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 为的垂心.
(1)求证:平面平面;
(2)若,点在线段上,且,求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】试题分析:(1)延长交于点,先证明,再证明平面,即平面;(2)由(1)知平面,所以就是点到平面的距离,再证明,从而利用棱锥的体积公式可得结果.
试题解析:(1)如图,延长交于点.
因为为的重心,所以为的中点.
因为为的中点,所以.
因为是圆的直径,所以,所以.
因为平面, 平面,所以.
又平面, 平面, ,
所以平面,即平面.
又平面,所以平面平面.
(2)解:由(1)知平面,
所以就是点到平面的距离.
由已知可得, ,
所以为正三角形,
所以.又点为的重心,
所以.
故点到平面的距离为.
所以 .
练习册系列答案
相关题目
【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员 | 女公务员 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |