题目内容

已知函数f(x)为偶函数,满足f(x+1)=1-f(x),当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有四个零点,则实数k的取值范围是______.
由f(x+1)=1-f(x)可得函数f(x+2)=1-f(x+1)=1-[1-f(x)]=f(x),故函数f(x)是以2为周期的周期函数.
函数g(x)=f(x)-kx-k有四个零点,故函数y=f(x)的图象与直线y=k(x+1)在区间[-1,3]内有4个交点.
再根据函数f(x)为偶函数,如图所示:可得0<k,且 k(3+1)≤1,求得0<k≤
1
4

故答案为 (0,
1
4
].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网