题目内容
【题目】如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.
(1)证明:连接,,由图1知,四边形为菱形,且,
所以是正三角形,从而.
同理可证,,
所以平面.
又,所以平面,
因为平面,
所以平面平面.
易知,且为的中点,所以,
所以平面.
(2)解:由(1)可知,,且四边形为正方形.设的中点为,
以为原点,以,,所在直线分别为,,轴,建立空间直角坐标系,
则,,,,,
所以,,.
设平面的法向量为,
由得
取.
设直线与平面所成的角为,
所以,
所以直线与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.