题目内容
【题目】给出下列命题,其中所有正确命题的序号是__________.
①抛物线的准线方程为;
②过点作与抛物线只有一个公共点的直线仅有1条;
③是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.
④抛物线上到直线距离最短的点的坐标为.
【答案】③④
【解析】
运用直线与抛物线的位置关系分别判定命题的正确性
①抛物线的标准方程为不是;故错误
②过点作与抛物线只有一个公共点的直线有两条,一条是过点与抛物线相切的直线,一条是过点平行于轴的直线,故错误
③设,则以P为圆心,作与抛物线准线相切的圆的方程为,化简可得,当时恒成立,故此圆一定过定点,故正确
④设抛物线上到直线距离最短的点的坐标为
则
当时,取最小值
则抛物线上到直线距离最短的点的坐标为,故正确
综上其中所有正确命题的序号为③④
练习册系列答案
相关题目
【题目】某学校900名学生在一次百米测试中,成绩全部介于13秒与18 秒之间,利用分层抽样的方法抽取其中若干个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],有关数据见下表:
各组组员数 | 各组抽取人数 | |
[13,14) | 54 | a |
[14,15) | b | 8 |
[15,16) | 342 | 19 |
[16,17) | 288 | c |
[17,18] | d |
(1)求a,b,c,d的值;
(2)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率。