题目内容
【题目】某高中学校在2015年的一次体能测试中,规定所有男生必须依次参加50米跑、立定跳远和一分钟的引体向上三项测试,只有三项测试全部达标才算合格,已知男生甲的50米跑和立定跳远的测试与男生乙的50米跑测试已达标,男生甲还需要参加一分钟的引体向上测试,男生乙还需要参加立定跳远和一分钟引体向上两项测试,若甲参加一分钟引体向上测试达标的概率为p,乙参加立定跳远和一分钟引体向上的测试达标的概率均为 ,甲乙每一项测试是否达标互不影响,已知甲和乙同时合格的概率为 .
(1)求p的值,并计算甲和乙恰有一人合格的概率;
(2)在三项测试项目中,设甲达标的测试项目项数为x,乙达标的测试项目项数为y,记ξ=x+y,求随机变量ξ的分布列和数学期望.
【答案】
(1)解:设事件A1=“甲引体向上测试达标”,B1=“乙立定跳远测试达标”,
B2=“乙引体向上测试达标”,则P(A1)=p,P(B1)=P(B2)= ,
∵甲乙每一项测试是否达标互不影响,甲和乙同时合格的概率为 ,
∴p×( )2= ,解得p= ,
设事件A=“甲测试合格”,B=“乙测试合格”,
则P(A)= ,P(B)=P(B1B2)=( )2= ,
∴甲和乙恰有一人合格的概率:
p=P(A )+P( B)= + = .
(2)解:由已知得随机变量x的取值为2,3,随机变量y的取值为1,2,3,
∴ξ的可能取值为3,4,5,6,
P(ξ=3)= = ,
P(ξ=4)= = ,
P(ξ=5)= = ,
P(ξ=6)= = ,
∴随机变量ξ的分布列为:
ξ | 3 | 4 | 5 | 6 |
P |
∴E(ξ)= = .
【解析】(1)设事件A1=“甲引体向上测试达标”,B1=“乙立定跳远测试达标”,B2=“乙引体向上测试达标”,则P(A1)=p,P(B1)=P(B2)= ,由此利用题设条件求出p= ,设事件A=“甲测试合格”,B=“乙测试合格”,则P(A)= ,P(B)=P(B1B2)= ,由此能求出甲和乙恰有一人合格的概率.(2)由已知得随机变量x的取值为2,3,随机变量y的取值为1,2,3,ξ的可能取值为3,4,5,6,分别求出相应的概率,由此能求出随机变量ξ的分布列和E(ξ).
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】甲,乙,丙三位学生独立地解同一道题,甲做对的概率为 ,乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:
ξ | 0 | 1 | 2 | 3 |
P | a | b |
(1)求至少有一位学生做对该题的概率;
(2)求m,n的值;
(3)求ξ的数学期望.
【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
=,=-.
【题目】为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:
手机控 | 非手机控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望. 参考公式: .
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.456[ | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |