题目内容
关于函数f(x)=4sin(2x+
)(x∈R),有下列命题:
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的表达式可改写为y="4" cos(2x-
);
③y=f(x)的图象关于点(-
,0)对称;
④y=f(x)的图象关于直线x=-
对称.
其中正确命题的序号是 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913767304.png)
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的表达式可改写为y="4" cos(2x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913783307.png)
③y=f(x)的图象关于点(-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913783307.png)
④y=f(x)的图象关于直线x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913783307.png)
其中正确命题的序号是 .
②③
①错,∵当x1=-
,x2=
时,f(x1)=f(x2)=0,而x1-x2=-
.
②对,∵y=4cos(2x-
)=4cos[
-(2x+
)]
=4sin(2x+
).
③对,∵当x=-
时,2x+
=0,此时f(x)=0,
故f(x)的图象关于(-
,0)成中心对称.
④错,由③可知x=-
不是y=f(x)的图象的对称轴.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913814326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913829329.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913845313.png)
②对,∵y=4cos(2x-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913814326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913845313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913829329.png)
=4sin(2x+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913829329.png)
③对,∵当x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913814326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913829329.png)
故f(x)的图象关于(-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913814326.png)
④错,由③可知x=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035913814326.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目