题目内容
【题目】已知:函数 (a、b、c是常数)是奇函数,且满足 , (Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间 上的单调性并证明.
【答案】解:(Ⅰ)∵f(﹣x)=﹣f(x)∴c=0∵
∴ ∴
(Ⅱ)∵由(1)问可得
∴ 在区间(0,0.5)上是单调递减的
证明:设任意的两个实数
∵
=
又∵
∴x1﹣x2<0 ,1﹣4x1x2>0f(x1)﹣f(x2)>0
∴ 在区间(0,0.5)上是单调递减的.
【解析】(1)由函数是奇函数得到c=0,再利用题中的2个等式求出a、b的值.(2)区间 上任取2个自变量x1、x2,将对应的函数值作差、变形到因式积的形式,判断符号,
依据单调性的定义做出结论.
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
练习册系列答案
相关题目
【题目】某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程 = x+ .
(参考公式: = , = ﹣ )