题目内容
【题目】已知向量,,角,,为的内角,其所对的边分别为,,.
(1)当取得最大值时,求角的大小;
(2)在(1)成立的条件下,当时,求的取值范围.
【答案】(1)(2)
【解析】分析:(1)由两向量的坐标,利用平面向量的数量积运算列出关系式,利用诱导公式及二倍角的余弦函数公式化简,整理后得到关于的二次函数,由的范围求出的范围,利用正弦函数的图象与性质得出此时的范围,利用二次函数的性质即可求出取得最大值时的度数;
(2)由及的值,利用正弦定理表示出,再利用三角形的内角和定理用表示出,将表示出的代入中,利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由的范围求出这个角的范围,利用正弦函数的图象与性质求出此时正弦函数的值域,即可确定出的取值范围.
详解:
(1)
,令,,
原式,当,即,时,取得最大值.
(2)当时,,.由正弦定理得:(为的外接圆半径)
于是
.
由,得,于是
,,
所以的范围是.
【题目】已知产品的质量采用综合指标值进行衡量,为一等品;为二等品;为三等品.我市一家工厂准备购进新型设备以提高生产产品的效益,在某供应商提供的设备中任选一个试用,生产了一批产品并统计相关数据,得到频率分布直方图:
(1)估计该新型设备生产的产品为二等品的概率;
(2)根据这家工厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
一等品 | 二等品 | 三等品 | |
销售率 | |||
单件售价 | 元 | 元 | 元 |
根据以往的销售方案,未售出的产品统一按原售价的全部处理完.已知该工厂认购该新型设备的前提条件是,该新型设备生产的产品同时满足下列两个条件:
①综合指标值的平均数不小于(同一组中的数据用该组区间的中点值作代表);
②单件平均利润值不低于.
若该新型设备生产的产品的成本为元/件,月产量为件,在销售方案不变的情况下,根据以上图表数据,分析该新型设备是否达到该工厂的认购条件.