题目内容
【题目】直线过点P且与x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线满足下列条件:①△AOB的周长为12;②△AOB的面积为6.若存在,求出方程;若不存在,请说明理由.
【答案】+=1.
【解析】试题分析:设直线的方程,若满足(1)可得,联立可解,即可得方程;
(2)若满足,可得,同样可得方程,它们公共的方程即为所求.
试题解析:
设直线方程为+=1(a>0,b>0),
若满足条件(1),则a+b+=12,①
又∵直线过点P(,2),∵+=1.②
由①②可得5a2-32a+48=0,
解得,或.
∴所求直线的方程为+=1或+=1,
即3x+4y-12=0或15x+8y-36=0.
若满足条件(2),则ab=12,③
由题意得,+=1,④
由③④整理得a2-6a+8=0,
解得,或.
∴所求直线的方程为+=1或+=1,
即3x+4y-12=0或3x+y-6=0.
综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x+4y-12=0.
练习册系列答案
相关题目
【题目】为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:
天数/天 | 151~180 | 181~210 | 211~240 | 241~270 | 271~300 | 301~330 | 331~360 | 361~390 |
灯管数/只 | 1 | 11 | 18 | 20 | 25 | 16 | 7 | 2 |
(1)试估计这种日光灯的平均使用寿命;
(2)若定期更换,可选择多长时间统一更换合适?