题目内容
已知数列的前项和为满足.
(1)函数与函数互为反函数,令,求数列的前项和;
(2)已知数列满足,证明:对任意的整数,有.
(1)函数与函数互为反函数,令,求数列的前项和;
(2)已知数列满足,证明:对任意的整数,有.
(1); (2)见解析
试题分析:(1)先由题意求出的解析式,再利用数列前n项和与第n项关系,求出及第n项与第n-1项的递推关系,结合等比数列的定义知数列是等比数列,再根据等比数列通项公式求出的通项公式,由对数函数与指数函数互为反函数结合已知条件求出的解析式,将的通项公式代入求出的通项公式,利用数列求和方法求出;(2)求出的通项公式,将不等式左边具体化,利用放缩法化成等比数列求和问题求出和,通过放缩所证不等式.
试题解析:(1)由,得
当时,有,
所以数列是以2为首项,2为公比的等比数列,所以
由题意得,所以
①
得 ②
得,所以
(2)由通项公式得,当且为奇数时
当且为偶数时
当且为奇数时
所以对任意的整数,有.
练习册系列答案
相关题目