题目内容

【题目】△ABC的内角A、B、C的对边分别为a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.

【答案】解:(Ⅰ)由正弦定理得a2+c2 ac=b2 , 由余弦定理可得b2=a2+c2﹣2accosB,
故cosB= ,B=45°
(Ⅱ)sinA=sin(30°+45°)=sin30°cos45°+cos30°sin45°=
故a=b× = =1+
∴c=b× =2× =
【解析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转换成边的关系,代入余弦定理中求得cosB的值,进而求得B.(Ⅱ)利用两角和公式先求得sinA的值,进而利用正弦定理分别求得a和c.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网