题目内容
【题目】已知离心率为的椭圆过点,点分别为椭圆的左、右焦点,过的直线与交于两点,且.
(1)求椭圆的方程;
(2)求证:以 为直径的圆过坐标原点.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】试题分析:
(1)利用离心率结合椭圆所过的点得到关系 的方程组,求解方程组即可求得椭圆的标准方程;
(2)分类讨论,当斜率不存在的时候单独考查,当斜率存在的时候设出直线方程,联立直线与椭圆的方程,结合韦达定理和平面向量的结论证得 即可.
试题解析:
(Ⅰ)点, 分别为椭圆的左右焦点,椭圆的方程为;
由离心率为得: ;
过点得: ;
所以, , ;椭圆方程为;
(Ⅱ)由(1)知, ;令, ;
当直线的斜率不存在时,直线方程为;
此时, ,不满足;设直线方程为;
代入椭圆方程得:
韦达定理: , ;
所以, ,
;
所以, ;
点到直线的距离为;
所以,由得: ;
所以,以为直径的圆过坐标原点
练习册系列答案
相关题目