题目内容
设点F(0,
),动圆P经过点F且和直线y=-
相切.记动圆的圆心P的轨迹为曲线W.
(Ⅰ)求曲线W的方程;
(Ⅱ)过点F作互相垂直的直线l1,l2,分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.
3 |
2 |
3 |
2 |
(Ⅰ)求曲线W的方程;
(Ⅱ)过点F作互相垂直的直线l1,l2,分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.
(Ⅰ)过点P作PN垂直直线y=-
于点N.
依题意得|PF|=|PN|,
所以动点P的轨迹为是以F(0,
)为焦点,直线y=-
为准线的抛物线,
即曲线W的方程是x2=6y
(Ⅱ)依题意,直线l1,l2的斜率存在且不为0,
设直线l1的方程为y=kx+
,
由l1⊥l2得l2的方程为y=-
x+
.
将y=kx+
代入x2=6y,化简得x2-6kx-9=0
设A(x1,y1),B(x2,y2),则x1+x2=6k,x1x2=-9.
∴|AB|=
=
=6(k2+1),
同理可得|CD|=6(
+1).
∴四边形ACBD的面积S=
|AB|•|CD|=18(k2+1)(
+1)=18(k2+
+2)≥72,
当且仅当k2=
,即k=±1时,Smin=72.
故四边形ACBD面积的最小值是72.
3 |
2 |
依题意得|PF|=|PN|,
所以动点P的轨迹为是以F(0,
3 |
2 |
3 |
2 |
即曲线W的方程是x2=6y
(Ⅱ)依题意,直线l1,l2的斜率存在且不为0,
设直线l1的方程为y=kx+
3 |
2 |
由l1⊥l2得l2的方程为y=-
1 |
k |
3 |
2 |
将y=kx+
3 |
2 |
设A(x1,y1),B(x2,y2),则x1+x2=6k,x1x2=-9.
∴|AB|=
(x1-x2)2+(y1-y2)2 |
(1+k2)[(x1+x2)2-4x1x2] |
同理可得|CD|=6(
1 |
k2 |
∴四边形ACBD的面积S=
1 |
2 |
1 |
k2 |
1 |
k2 |
当且仅当k2=
1 |
k2 |
故四边形ACBD面积的最小值是72.
练习册系列答案
相关题目