题目内容
【题目】如图,矩形和梯形所在的平面互相垂直,,,.
(1)若为的中点,求证:平面;
(2)若,求四棱锥的体积.
【答案】(1)见解析(2)
【解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;
(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.
(1)证明:设与交于点,连接,
在矩形中,点为中点,
∵为的中点,∴,
又∵平面,平面,
∴平面.
(2)取中点为,连接,,
平面平面,
平面平面,
平面,,
∴平面,同理平面,
∴的长即为四棱锥的高,
在梯形中,,
∴四边形是平行四边形,,
∴平面,
又∵平面,∴,
又,,
∴平面,.
注意到,
∴,,
∴.
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】工厂车间某部门有8个小组,在一次技能考试中成绩情况分析如下:
小组 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
大于90分人数 | 6 | 6 | 7 | 3 | 5 | 3 | 3 | 7 |
不大于90分人数 | 39 | 39 | 38 | 42 | 40 | 42 | 42 | 38 |
(1)求90分以上人数对小组序号的线性回归方程;
附:回归方程为,其中,.本题,.
(2)能否在犯错误的概率不超过0.01的前提下认为7组与8组的成绩是否优秀(大于90分)与小组有关系.附部分临界值表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.