题目内容
【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)线段上存在点,使得平面,且.
【解析】
(I)根据面面垂直的性质定理,证得平面,由此证得.(II)以为轴,轴,轴建立空间直角坐标系,通过计算直线的方向向量和平面的法向量,由此计算出线面角的正弦值.(III)设,用表示出点的坐标,利用直线的方向向量和平面的法向量垂直列方程,解方程求得的值,由此判断存在符合题意的点.
解:(Ⅰ)证明:因为为正方形,
所以.
又因为平面平面,
且平面平面,
所以平面.
所以.
(Ⅱ)由(Ⅰ)可知,平面,所以,.
因为,所以两两垂直.
分别以为轴,轴,轴建立空间直角坐标系(如图).
因为,,
所以,
所以.
设平面的一个法向量为,
则 即
令,则,
所以.
设直线与平面所成角为,
则.
(Ⅲ)设,
设,则,
所以,所以,
所以.
设平面的一个法向量为,则
因为,所以
令,则,所以.
在线段上存在点,使得平面等价于存在,使得.
因为,由,
所以,
所以线段上存在点,使得平面,且.
练习册系列答案
相关题目