题目内容

【题目】已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2 , 则不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集为(
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)

【答案】A
【解析】解:由2f(x)+xf′(x)>x2 , (x>0); 得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0;
令F(x)=x2f(x);
则当x>0时,F'(x)<0,即F(x)在(0,+∞)上是减函数,
∵f(x)为奇函数,
∴F(x)=x2f(x)为奇函数,
∴F(x)在(﹣∞,0)上是减函数,
∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2);
即不等式等价为F(x+2014)+F(﹣2)<0;
即F(x+2014)<﹣F(﹣2)=F(2),
∴x+2014<2,∴x<﹣2012;
∴原不等式的解集是(﹣∞,﹣2012).
故选:A.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网