题目内容

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.

成绩分组

频数

频率

(160,165]

5

0.05

(165,170]

0.35

(170,175]

30

(175,180]

20

0.20

(180,185]

10

0.10

合计

100

1


(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?

【答案】
(1)解:①位置上的数据为 =35,②位置上的数据为 =0.3;

频率分布直方图如右图


(2)解:6× ≈2.47,6× ≈2.11,6× ≈1.41.

故第3、4、5组每组各抽取3,2,1名学生进入第二轮面试.


(3)解:其概率模型为古典概型,

设第3、4、5组抽取的学生分别为:a,b,c,1,2,m.

则其所有的基本事件有:

(a,b),(a,c),(a,1),(a,2),(a,m),

(b,c),(b,1),(b,2),(b,m),

(c,1),(c,2),(c,m),

(1,2),(1,m),

(2,m).

共有15个,符合条件的有9个;

故概率为 =0.6.


【解析】(1)由频率= 可求其数据,频率分布直方图时注意纵轴;(2)用分层抽样的方法获取样本中的比例;(3)用古典概型求概率.
【考点精析】掌握频率分布表是解答本题的根本,需要知道第一步,求极差;第二步,决定组距与组数;第三步,确定分点,将数据分组;第四步,列频率分布表.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网