题目内容
【题目】设全集U=R,集合 ,P={x|﹣1≤x≤4},则(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}
【答案】D
【解析】解:∵ ={x|﹣2≤x≤3},
∴CUM═{x|x<﹣2或x>3},
又P={x|﹣1≤x≤4},
∴(CUM)∩P={x|3<x≤4}
故选D
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法,以及对绝对值不等式的解法的理解,了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
练习册系列答案
相关题目