题目内容
数列1
,3
,5
,7
,…,(2n-1)+
,…的前n项和Sn的值为( )
1 |
2 |
1 |
4 |
1 |
8 |
1 |
16 |
1 |
2n |
A.n2+1-
| B.2n2-n+1-
| ||||
C.n2+1-
| D.n2-n+1-
|
由题意可得Sn=(1+
)+(3+
)+(5+
)+…+(2n-1+
)
=(1+3+5+…+2n-1)+(
+
+
+…+
)
=
+
=n2+1-
故选A
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
=(1+3+5+…+2n-1)+(
1 |
2 |
1 |
4 |
1 |
8 |
1 |
2n |
=
n(1+2n-1) |
2 |
| ||||
1-
|
1 |
2n |
故选A
练习册系列答案
相关题目