题目内容

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

【答案】
(1)

解:∵f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2

=2 sin2x﹣1+sin2x

=2 ﹣1+sin2x

=sin2x﹣ cos2x+ ﹣1

=2sin(2x﹣ )+ ﹣1,

令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+

可得函数的增区间为[kπ﹣ ,kπ+ ],k∈Z


(2)

解:把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣ )+ ﹣1的图象;

再把得到的图象向左平移 个单位,得到函数y=g(x)=2sinx+ ﹣1的图象,

∴g( )=2sin + ﹣1=


【解析】(1)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.(2)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g( )的值.;本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网