题目内容
若A={y|y=2x,x∈R},B{(x,y)|y=x2,x∈R},则A∩B的子集个数为( )
A、4 | B、2 | C、1 | D、0 |
考点:交集及其运算
专题:集合
分析:利用指数函数的性质求出A中y的范围确定出A,B为二次函数y=x2上的点集,可得出两集合的交集为空集,即可确定出交集的子集个数.
解答:
解:∵A={y|y=2x,x∈R},B{(x,y)|y=x2,x∈R},
∴A∩B=∅,
则A∩B的子集个数为1.
故选:C.
∴A∩B=∅,
则A∩B的子集个数为1.
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
已知函数y=f(x)(x∈R)是一个以6为最小正周期的奇函数,则f(3)的值为( )
A、0 | B、6 | C、-6 | D、不能确定 |
如图,在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将AD折起,使二面角D-AE-B为60°,则异面直线BC与AD所成的角余弦值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|