题目内容
【题目】按规定:车辆驾驶员血液酒精浓度在20—80mg/100ml(不含80)之间,属酒后驾车;在(含80)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒驾车的驾驶员20人,右图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.
(1)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;
(2)从血液酒精浓度在范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.
【答案】(1)3人;(2);
【解析】
试题(1)由频率分布直方图,先求出血液酒精浓度在和在范围内的人数,然后作和即为醉酒驾车的人数;(2)先求出从血液酒精浓度在范围内驾驶员中任取2人的所有个数,以及恰有一人的血液酒精浓度在范围内的所有个数,两个数值做比值即可;
试题解析:(1)由频率分布直方图可知:血液酒精浓度在范围内有:人,
血液酒精浓度在范围内有:人,所以醉酒驾车的人数为2+1=3人;
(2)因为血液酒精浓度在内范围内有3人,记为,范围内有2人,记为,则从中任取2人的所有情况为共10种,恰有一人的血液酒精浓度在范围内的情况有,共6种设“恰有1人属于醉酒驾车”为事件,则
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+)+b来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?
【题目】某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
贷款(亿元) | 50 | 60 | 70 | 80 | 100 |
(1)将上表进行如下处理:,
得到数据:
1 | 2 | 3 | 4 | 5 | |
0 | 1 | 2 | 3 | 5 |
试求与的线性回归方程,再写出与的线性回归方程.
(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.
参考公式:,
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数精确到;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.