题目内容

【题目】已知函数定义域为在区间上单调递增的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

【答案】B

【解析】

由两个特殊自变量的大小关系及其函数值的大小关系是不能推出函数的单调性的,

因为它不满足增函数的定义中的两个自变量在定义域中要具有任意性,因此不能推出在区间上单调递增,根据增函数的性质可得:若在区间上单调递增,则是正确的,

故选B.

因为12是区间[1,2]内的两个指定值,不具有任意性,不满足增函数的定义,

所以由不能推出在区间上单调递增”,

反过来,若在区间上单调递增的,根据增函数的性质可以推出,

因此根据充分必要条件的定义可知:

在区间上单调递增的必要不充分条件.

故选B.

练习册系列答案
相关题目

【题目】对于两条平行直线(下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在之间()操作停止,此时称图象为图象关于直线衍生图形,线段关于直线的“衍生图形”为折线段.

(1)直线型

平面直角坐标系中,设直线,直线

令图象的函数图象,则图象的解析式为

②令图像的函数图象,请你画出的图象

若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.

请你观察图象并描述其单调性,直接写出结果_______.

请你观察图象并判断其奇偶性,直接写出结果_______.

图象所对应函数的零点为_______.

任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(______________),最低点坐标为(______________.

若直线与图象2个不同的交点,则的取值范围是_______.

根据函数图象,请你写出图象的解析式_______.

(2)曲线型

若图象为函数的图象,

平面直角坐标系中,设直线,直线

则我们可以很容易得到所对应的解析式为.

请画出的图象,记所对应的函数解析式为.

函数的单调增区间为_______,单调减区间为_______.

时候,函数的最大值为_______,最小值为_______.

若方程有四个不同的实数根,则的取值范围为_______.

(3)封闭图形型

平面直角坐标系中,设直线,直线

设图象为四边形,其顶点坐标分别为,,,,四边形关于直线的“衍生图形”为.

的周长为_______.

②若直线平分的周长,_______.

③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网