题目内容
【题目】三角形ABC中,,AC=1,以B为直角顶点作等腰直角三角形BCD(A、D在BC两侧),当∠BAC变化时,线段AD的长度最大值为._______________.
【答案】3
【解析】
△ABC中由正弦定理得BDsin∠ABC=sin∠BAC,在△ABD中由余弦定理得AD2=BD2+AC2﹣2BDABcos(90°+∠ABC),可化为5+4sin(∠BAC﹣45°),由此可求得答案.
如图所示
△ABC中,AB,AC=1,
由正弦定理得,
∴BCsin∠ABC=ACsin∠BAC,
∴BDsin∠ABC=sin∠BAC;
△ABD中,AD2=BD2+AB2﹣2BDABcos(90°+∠ABC)
=BD2+2+2BDsin∠ABC
=AC2+AB2﹣2ACABcos∠BAC+2+2sin∠BAC
=5﹣2cos∠BAC+2sin∠BAC
=5+4sin(∠BAC﹣45°),
∴当∠BAC=135°时AD2最大为9,AD最大值为3,
故答案为:3.
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程;
(2)用表示用(1)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望.
(参考公式:;参考数据:)
【题目】手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,已知从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(I)根据已知条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”?
2×2列联表:
青年 | 中老年 | 合计 | |
使用手机支付 | 120 | ||
不使用手机支付 | 48 | ||
合计 | 200 |
(Ⅱ)现采用分层抽样的方法从这200名顾客中按照“使用手机支付”和“不使用手机支付”抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付”的人数的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |