题目内容

定义在(-1,1)上的函数f(x)满足①对任意xy∈(-1,1),都有f(x)+f(y)=f();②当x∈(-1,0)时,有f(x)>0.
求证:.
证明略
f(x)+f(y)=f()中的x,y,令x=y=0,得f(0)=0,
再令y=-x,又得f(x)+f(-x)=f(0)=0,即f(-x)=-f(x),
f(x)在x∈(-1,1)上是奇函数.
设-1<x1x2<0,则f(x1)-f(x2)=f(x1)+f(-x2)=f(),
∵-1<x1x2<0,∴x1x2<0,1-x1x2>0 ∴<0,
于是由②知f()?>0,
从而f(x1)-f(x2)>0,即f(x1)>f(x2),
f(x)在x∈(-1,0)上是单调递减函数.
根据奇函数的图像关于原点对称,知
f(x)在x∈(0,1)上仍是递减函数,且f(x)<0.



练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网