题目内容
【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):
南方:158,170,166,169,180,175,171,176,162,163.
北方:183,173,169,163,179,171,157,175,184,166.
(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.
(2)设抽测的10名南方大学生的平均身高为cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义。
【答案】(1)见解析部分;(2)s=42.6,s表示10位南方大学生身高的方差,是描述身高的离散程度的量.s值越小,表示身高越整齐,s值越大,表示身高越参差不齐.
【解析】
(1)根据题意画出茎叶图即可,然后根据茎叶图写出统计结论.(2)由框图可得s表示样本数据的方差,然后根据题中数据求出s即可,然后说明它的统计学意义.
(1)由题意画出茎叶图如图所示.
统计结论(给出下述四个结论供参考):
①北方大学生的平均身高大于南方大学生的平均身高;
②南方大学生的身高比北方大学生的身高更整齐;
③南方大学生的身高的中位数为169.5 cm,北方大学生的身高的中位数是172 cm;
④南方大学生的身高基本上是对称的,而且大多数集中在均值附近,北方大学生的身高分布较为分散.
(2)由程序框图可得s表示10位南方大学生身高的方差.
由题意得10位南方大学生身高的平均数,
故方差为.
s是描述身高的离散程度的量,它的统计学意义是:s的值越小,表示身高越整齐,s的值越大,表示身高越参差不齐.
练习册系列答案
相关题目