题目内容
【题目】若将函数 的图象向左平移φ(φ>0)个单位,所得图象关于原点对称,则φ最小时,tanφ=( )
A.
B.
C.
D.
【答案】B
【解析】解:将函数 的图象向左平移φ(φ>0)个单位,可得y=cos(2x+2φ+ )的图象; 再根据所得关于原点对称,可得2φ+ =kπ+ ,k∈Z,∴φ的最小值为 ,
∴tanφ=tan = ,
故选:B.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立与之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).
附参考公式:回归方程中中和最小二乘估计分别为
,相关系数
参考数据:
.