题目内容
(本题满分10分)如图,在四棱锥
中,底面
是边长为2的正方形,且
,
=
,
为
的中点. 求:
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线
与平面
所成角的正弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017557932128.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755559407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755574384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755590524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755637336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755684299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755699330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755715330.png)
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755730338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755746369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017557932128.png)
20. 解:如图,以
为一组基底建立空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017558243077.png)
由题可知,
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756027414.png)
( I )
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756167483.png)
设直线
与直线
所成角为
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017562451184.png)
( II )![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756261669.png)
设平面
的法向量为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756308448.png)
因为
,则
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756354433.png)
设直线
与平面
所成的角为
,
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017566821058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755808485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017558243077.png)
由题可知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755855410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755964418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755996409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756027414.png)
( I )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756042478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756167483.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755730338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756198355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756230309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017562451184.png)
( II )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756261669.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755746369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756308448.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756323519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756339642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756354433.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755730338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201755746369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201756604311.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232017566821058.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目