题目内容
【题目】已知a∈R,若f(x)=(x+ ﹣1)ex在区间(1,3)上有极值点,则a的取值范围是 .
【答案】(﹣27,0)
【解析】解:∵f(x)=(x+ ﹣1)ex , ∴f′(x)=( )ex ,
设h(x)=x3+ax﹣a,
∴h′(x)=3x2+a,
a≥0时,h′(x)>0在(1,3)上恒成立,
即函数h(x)在(1,3)上为增函数,
∵h(1)=1>0,函数f(x)在(1,3)无极值点,
a<0时,h(x)=x3+a(x﹣1),
∵x∈(1,3),h′(x)=3x2+a,
令h′(x)=0,解得:a=﹣3x2 ,
若 在区间(1,3)上有极值点,
只需a=﹣3x2有解,
而﹣27<﹣3x2<0,
故﹣27<a<0,
所以答案是:(﹣27,0).
【考点精析】通过灵活运用函数的极值与导数,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.
练习册系列答案
相关题目
【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:
原料 | 磷酸盐(单位:吨) | 硝酸盐(单位:吨) |
甲 | 4 | 20 |
乙 | 2 | 20 |
现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?