题目内容
【题目】已知圆O经过椭圆C:=1(a>b>0)的两个焦点以及两个顶点,且点(b,)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与圆O相切,与椭圆C交于M、N两点,且|MN|=,求直线l的倾斜角.
【答案】(1);(2)或
【解析】
(1)先由题意得出 ,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.
(1)由题可知圆只能经过椭圆的上下顶点,所以椭圆焦距等于短轴长,可得,
又点在椭圆上,所以,解得,
即椭圆的方程为.
(2)圆的方程为,当直线不存在斜率时,解得,不符合题意;
当直线存在斜率时,设其方程为,因为直线与圆相切,所以,即.
将直线与椭圆的方程联立,得:
,
判别式,即,
设,则 ,
所以,
解得,
所以直线的倾斜角为或.
练习册系列答案
相关题目