ÌâÄ¿ÄÚÈÝ
20£®ÇóÏÂÁи´ÊýµÄÄ£ºÍ·ø½Ç£¨Ä£±£Áô¸ùºÅ£»·ø½ÇΪÌØÊâ½ÇµÄ±£Áô¦Ð£¬·ø½ÇΪ·ÇÌØÊâ½ÇµÄÓû¡¶ÈÖƱíʾ£¬²¢±£Áô4λÓÐЧÊý×Ö£©£º£¨1£©-$\sqrt{3}$£»
£¨2£©4+2i£»
£¨3£©-2+5i£»
£¨4£©-4-3i£»
£¨5£©$\frac{1}{2}-\frac{\sqrt{3}}{2}$i£»
£¨6£©2+3i£»
£¨7£©-3+$\frac{1}{2}$i£»
£¨9£©2-3i£»
£¨10£©-3$-\frac{1}{2}$i£®
·ÖÎö ÀûÓø´ÊýÇóÄ£ÒÔ¼°¸´ÊýµÄ·ø½ÇÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©-$\sqrt{3}$£»µÄģΪ£º$\sqrt{3}$£¬·ø½ÇΪ¦Ð£®
£¨2£©4+2i£»µÄģΪ£º$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$£¬·ø½ÇΪarctan$\frac{1}{2}$¡Ö0.4636£®
£¨3£©-2+5i£»µÄģΪ£º$\sqrt{{5}^{2}+{£¨-2£©}^{2}}$=$\sqrt{29}$£¬·ø½ÇΪ¦Ð-arctan2.5¡Ö1.9513£®
£¨4£©-4-3i£»µÄģΪ£º$\sqrt{£¨-{4£©}^{2}+{£¨-3£©}^{2}}$=5£¬·ø½ÇΪ¦Ð+arctan$\frac{3}{4}$¡Ö3.7851£®
£¨5£©$\frac{1}{2}-\frac{\sqrt{3}}{2}$i£»µÄģΪ£º1£¬·ø½ÇΪ$\frac{5¦Ð}{3}$£®
£¨6£©2+3i£»µÄģΪ£º$\sqrt{5}$£¬·ø½ÇΪarctan$\frac{2}{3}$¡Ö0.5880£®
£¨7£©-3+$\frac{1}{2}$i£»µÄģΪ£º$\sqrt{{£¨-3£©}^{2}+£¨{\frac{1}{2}£©}^{2}}$=$\frac{\sqrt{37}}{2}$£¬·ø½ÇΪ¦Ð-arctan$\frac{1}{6}$¡Ö2.9761£®
£¨9£©2-3i£»µÄģΪ£º$\sqrt{3}$£¬·ø½ÇΪ¦Ð+arctan1.5¡Ö4.1243£®
£¨10£©-3$-\frac{1}{2}$i£®µÄģΪ£º$\sqrt{{£¨-3£©}^{2}+{£¨-\frac{1}{2}£©}^{2}}$=$\frac{\sqrt{37}}{2}$£¬·ø½ÇΪ¦Ð+arctan$\frac{1}{6}$¡Ö3.3070£®
µãÆÀ ±¾Ì⿼²é¸´ÊýÇóÄ££¬·ø½ÇµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | a£¾b£¾c | B£® | a£¾c£¾b | C£® | b£¾a£¾c | D£® | c£¾b£¾a |
A£® | 10£¬7 | B£® | 10£¬8 | C£® | 8£¬6 | D£® | ÒÔÉ϶¼²»¶Ô |
A£® | £¨0£¬$¡À\sqrt{k}$£© | B£® | £¨0£¬$¡À\sqrt{2k}$£© | C£® | £¨0£¬$¡À\sqrt{-k}$£© | D£® | £¨0£¬$¡À\sqrt{-2k}$£© |