题目内容
【题目】已知函数f(x)=(2x-x2)ex-1.
(1)求函数f(x)的单调区间;
(2)若对任意x≥1,都有f(x)-mx-1+m≤0恒成立,求实数m的取值范围.
【答案】(1)见解析;(2)
【解析】试题分析:
(1)求出导函数,由不等式得增区间;由不等式得减区间;
(2)设,由可得,下面只要在的情况下研究问题.求出导函数,要研究的正负,因此再设,再求出导函数,可得时, ,即在上是递减的,因此得,按和分类讨论研究的最大值可得结论.
试题解析:
(1)由已知得f′(x)=(-x2+2)ex-1,当f′(x)<0,即-x2+2<0时,x<-或x>;
当f′(x)>0,即-x2+2>0时,- <x<,所以f(x)在(-∞,-)上单调递减,在(-,)上单调递增,在(,+∞)上单调递减.
(2)令g(x)=(2x-x2)ex-1-mx-1+m,x≥1,
由已知可得g(2)≤0,即m≥-1,下面只要考虑m≥-1的情况即可.
g′(x)=(2-x2)ex-1-m,令h(x)=(2-x2)ex-1-m,则h′(x)=-(x2+2x-2)ex-1,
因为x≥1,所以x2+2x-2>0,所以h′(x)<0,
所以h(x)在[1,+∞)上单调递减,即g′(x)在[1,+∞)上单调递减,则g′(x)≤g′(1)=1-m.
①当1-m≤0,即m≥1时,此时g′(x)≤0,所以g(x)在[1,+∞)上单调递减,所以g(x)≤g(1)=0,满足条件;
②当1-m>0,即-1≤m<1时,此时g′(1)>0,g′(2)=-2e-m<0,所以存在x0∈(1,2),使得g′(x0)=0,则当1<x<x0时,g′(x)>0;当x>x0时,g′(x)<0,所以g(x)在[1,x0]上单调递增,在(x0,+∞)上单调递减,所以当x∈[1,x0]时,g(x)≥g(1)=0,此时不满足条件.
综上所述,实数m的取值范围为[1,+∞).
【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:
车速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次数y | 1 | 3 | 6 | 9 | 11 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+;
(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.
附:=,=-