题目内容

设函数f(x)=x3+2ax2bxag(x)=x2-3x+2,其中x
R,ab为常数,已知曲线yf(x)与yg(x)在点(2,0)处有相同的切线l.
ab的值,并求出切线l的方程.
xy-2=0
f′(x)=3x2+4axbg′(x)=2x-3,
由于曲线yf(x)与yg(x)在点(2,0)处有相同的切线,∴f′(2)=g′(2),f(2)=g(2)=0,∴a=-2,b=5.
所以,所求切线的斜率为g′(2)=1,
切线方程为y-0=1(x-2),即xy-2=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网