题目内容
【题目】下列结论正确的是( )
A.在中,若,则
B.在锐角三角形中,不等式恒成立
C.在中,若,,则为等腰直角三角形
D.在中,若,,三角形面积,则三角形外接圆半径为
【答案】ABC
【解析】
对选项A,利用三角形“大角对长边”和正弦定理即可判断A正确;对选项B,利用余弦定理,即可判断B正确,对选项C,首先根据余弦定理得到,利用正弦定理边化角公式得到,再化简即可判断选项C正确.对选项D,首先利用面积公式得到,利用余弦定理得到,再利用正弦定理即可判断D错误.
对选项A,在中,由,
故A正确.
对选项B,若,则,
又因为,所以为锐角,符合为锐角三角形,故B正确.
对选项C,,整理得:.
因为,所以,即.
所以,即,
,
即,又,所以.
故,则为等腰直角三角形,故C正确.
对选项D,,解得.
,
所以.
又因为,,故D错误.
故选:ABC
练习册系列答案
相关题目
【题目】2022年第24届冬奥会将在北京举行。为了推动我国冰雪运动的发展,京西某区兴建了“腾越”冰雪运动基地。通过对来“腾越”参加冰雪运动的100员运动员随机抽样调查,他们的身份分布如下: 注:将表中频率视为概率。
身份 | 小学生 | 初中生 | 高中生 | 大学生 | 职工 | 合计 |
人数 | 40 | 20 | 10 | 20 | 10 | 100 |
对10名高中生又进行了详细分类如下表:
年级 | 高一 | 高二 | 高三 | 合计 |
人数 | 4 | 4 | 2 | 10 |
(1)求来“腾越”参加冰雪运动的人员中高中生的概率;
(2)根据统计,春节当天来“腾越”参加冰雪运动的人员中,小学生是340人,估计高中生是多少人?
(3)在上表10名高中生中,从高二,高三6名学生中随机选出2人进行情况调查,至少有一名高三学生的概率是多少?