题目内容
1.函数f(x)=sin2x+sinxcosx+1的最小正周期是π,最小值是$\frac{3-\sqrt{2}}{2}$.分析 由三角函数恒等变换化简解析式可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$,由正弦函数的图象和性质即可求得最小正周期,最小值.
解答 解:∵f(x)=sin2x+sinxcosx+1
=$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x+1
=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$.
∴最小正周期T=$\frac{2π}{2}=π$,最小值为:$\frac{3}{2}-\frac{\sqrt{2}}{2}=\frac{3-\sqrt{2}}{2}$.
故答案为:π,$\frac{3-\sqrt{2}}{2}$.
点评 本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.
练习册系列答案
相关题目
12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为($\frac{5π}{12}$,0),求θ的最小值.
4.设函数f(x)=$\left\{\begin{array}{l}{x}^{2}-4x+6,x≥0\\ x+6,x<0\end{array}\right.$则不等式f(x)>f(1)的解集是( )
A. | (-3,1)∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-1)∪(1,3) |
20.已知△ABC的面积为4,点E、F分别在边AB、AC上,且$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{BC}$,若P为线段EF上一动点,则$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{BC}$2的最小值为( )
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{3\sqrt{6}}{2}$ | C. | $\frac{8\sqrt{3}}{3}$ | D. | 3$\sqrt{3}$ |