题目内容
【题目】如图,四棱锥的底面是直角梯形,, ,是的中点,.
(Ⅰ)证明:⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)线段上是否存在一点,使得直线平面. 若存在,确定点的位置;若不存在,说明理由.
【答案】(Ⅰ)见证明;(Ⅱ);(Ⅲ)见解析
【解析】
(I)依题意易得两两垂直,以为原点建立空间直角坐标系.通过,证得平面.(II)通过计算平面和平面的法向量,由此计算出面面角的余弦值,进而求得二面角的大小.(III)设出的坐标,利用直线的方向向量和平面的法向量垂直,求出关于点坐标的参数,由此判断出点的位置.
(Ⅰ)因为 平面.
所以,,又.
如图,以为原点建立空间直角坐标系.
由题意得
所以,,.
所以,,
所以,,
所以平面.
(Ⅱ)设平面的法向量为,
因为.
所以,即,
令,则.
于是.
因为⊥平面,所以为平面的法向量,
又.
所以.
因为所求二面角为钝角,所以二面角大小为.
(Ⅲ)解:设,
,
,.
设平面的法向量,
则,即 ,
令,,. 于是,
如果直线平面,
那么,解得 .
所以,存在点为线段靠近点的三等分点,使得直线平面.
练习册系列答案
相关题目
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度(单位:cm)的情况如表1:
900 | 700 | 300 | 100 | |
0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年11月份AQI指数频数分布如表2:
频数(天) | 3 | 6 | 12 | 6 | 3 |
<>(1)设,若与之间是线性关系,试根据表1的数据求出关于的线性回归方程;
(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
根据表3估计小李的洗车店2017年11月份每天的平均收入.
附参考公式:,其中,.