题目内容
【题目】如图放置的边长为1的正方形沿轴滚动,点恰好经过原点.设顶点的轨迹方程是,则对函数有下列判断:①函数是偶函数;②对任意的,都有;③函数在区间上单调递减;④函数的值域是;⑤.其中判断正确的序号是__________.
【答案】①②⑤
【解析】
根据正方形的运动,得到点P的轨迹方程,然后根据函数的图象和性质分别进行判断即可.
当﹣2≤x≤﹣1,P的轨迹是以A为圆心,半径为1的圆,
当﹣1≤x≤1时,P的轨迹是以B为圆心,半径为的圆,
当1≤x≤2时,P的轨迹是以C为圆心,半径为1的圆,
当3≤x≤4时,P的轨迹是以A为圆心,半径为1的圆,
∴函数的周期是4.
因此最终构成图象如下:
①,根据图象的对称性可知函数y=f(x)是偶函数,故①正确;
②,由图象即分析可知函数的周期是4.
即f(x+4)=f(x),即f(x+2)=f(x﹣2),故②正确;
③,函数y=f(x)在区间[2,3]上单调递增,
故③错误;
④,由图象可得f(x)的值域为[0,],故④错误;
⑤,根据积分的几何意义可知f(x)dxπ()21×1π×12,
故⑤正确.
故答案为:①②⑤.
【题目】为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间(单位:小时),整理得到数据分组及频率分布直方图如下:
组号 | 分组 | 频数 |
1 | 6 | |
2 | 8 | |
3 | 22 | |
4 | 28 | |
5 | 12 | |
6 | 4 |
(1)从该单位随机选取一名职工,试计算这名职工一周内路边停车的时间少于8小时的频率;
(2)求频率分布直方图中的值.
【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明,近几年来,郑州市雾霾治理取得了很大成效,空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据,播报我市的空气质量.
(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值;
(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天在内.
组数 | 分组 | 天数 |
第一组 | 3 | |
第二组 | 4 | |
第三组 | 4 | |
第四组 | 6 | |
第五组 | 5 | |
第六组 | 4 | |
第七组 | 3 | |
第八组 | 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准,如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为,求的分布列及数学期望.