题目内容
【题目】如图,C、D是离心率为的椭圆的左、右顶点,、是该椭圆的左、右焦点, A、B是直线4上两个动点,连接AD和BD,它们分别与椭圆交于点E、F两点,且线段EF恰好过椭圆的左焦点. 当时,点E恰为线段AD的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.
【答案】(Ⅰ) (Ⅱ)见证明
【解析】
(Ⅰ)由题意可得,结合可求出,进而可求得椭圆的方程;(Ⅱ)设EF的方程为:,E()、F(),与椭圆联立,运用韦达定理得,,又设,由三点共线得,,求出中点坐标,求出点M到直线EF的距离,进而证得结果.
(Ⅰ)∵当时,点E恰为线段AD的中点,
∴,又,联立解得:,,,
∴椭圆的方程为.
(Ⅱ)设EF的方程为:,E()、F(),
联立得:
∴,
∴……(*)
又设,由A、E、D三点共线得,同理可得.
,
∴.
设AB中点为M,则M坐标为()即( ),
∴点M到直线EF的距离.
故以AB为直径的圆始终与直线EF相切.
练习册系列答案
相关题目
【题目】在第十五次全国国民阅读调查中,某地区调查组获得一个容量为的样本,其中城镇居民人,农村居民人.在这些居民中,经常阅读的城镇居民人,农村居民人.
(Ⅰ)填写下面列联表,并判断是否有的把握认为,经常阅读与居民居住地有关?
城镇居民 | 农村居民 | 合计 | |
经常阅读 | |||
不经常阅读 | |||
合计 |
(Ⅱ)从该地区居民城镇的居民中,随机抽取位居民参加一次阅读交流活动,记这位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的分布列和期望.
附:,其中