题目内容
【题目】设不等式组 表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是 .
【答案】
【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外
区域D: 表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的外部,如图中的阴影部分
∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣ π22=4﹣π
∴所求概率为P= =
所以答案是:
【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
练习册系列答案
相关题目
【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求y关于x的回归直线方程;(参考公式: = , =y﹣ )
(2)已知每辆该型号汽车的收购价格为w=0.01x3﹣0.09x2﹣1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价﹣收购价)