题目内容

【题目】已知向量 =(﹣2,4), =(﹣1,﹣2).
(1)求 的夹角的余弦值;
(2)若向量 ﹣λ 与2 + 垂直,求λ的值.

【答案】
(1)解:向量 =(﹣2,4), =(﹣1,﹣2),

=﹣2×(﹣1)+4×(﹣2)=﹣6,

| |= =2

| |= =

夹角的余弦值为

cosθ= = =﹣


(2)解:∵ ﹣λ =(﹣2,4)﹣(﹣λ,﹣2λ)=(λ﹣2,2λ+4),

2 + =(﹣4,8)+(﹣1,﹣2)=(﹣5,6);

又向量 ﹣λ 与2 + 垂直,

∴( ﹣2λ )(2 + )=﹣5(λ﹣2)+6(2λ+4)=0,

解得λ=﹣


【解析】(1)根据平面向量的数量积与夹角公式,即可求出两向量夹角的余弦值;(2)根据平面向量的坐标运算与两向量垂直,数量积为0,列出方程求出λ的值.
【考点精析】认真审题,首先需要了解数量积表示两个向量的夹角(设都是非零向量,的夹角,则).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网