题目内容

已知平面向量
a
b
不共线,若存在非零实数x,y,使得
c
=
a
+2x
b
d
=-y
a
+2(2-x2
b

(1)当
c
=
d
时,求x,y的值;
(2)若
a
=(cos
π
6
,sin(-
π
6
)
),
b
=(sin
π
6
,cos
π
6
),且
c
d
,试求函数y=f(x)的表达式.
(1)由条件得:
a
+2x
b
=-y
a
+(4-2x2)
b

∴(1+y)
a
+(2x-4+2x2
b
=
0

∵向量
a
b
不共线,
1+y=0
2x2+2x-4=0
,解得y=-1,x=1或x=-2.
(2)∵
a
b
=cos
π
6
sin
π
6
+sin(-
π
6
)cos
π
6
=0,∴
a
b

又∵
c
d
,∴
c
d
=0
,又由条件可知,|
a
|=|
b
|=1

c
d
=(
a
+2x
b
)•[-y
a
+(4-2x2)
b
]
=-y
a
2
-2xy
a
b
+(4-2x2
a
b
+2x(4-2x2
b
2

=-y+2x(4-2x2)=0,∴y=8x-4x3
即f(x)=8x-4x3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网