题目内容
【题目】(1)已知一个圆过直线与圆的两个交点,且面积最小,求此圆的方程;
(2)抛物线的顶点在原点,以椭圆的右焦点为焦点,过点的直线与抛物线有且仅有一个公共点,求直线的方程.
【答案】(1);(2), 或.
【解析】试题分析: (1)联立两圆方程求得两交点, ,可得圆心和半径,进而得圆的方程.
(2)由题易得抛物线的方程为.设直线方程与抛物线方程联立,解可得.
试题解析:(1)联立,得,
所以,两交点, ,易知以线段为直径的圆面积最小,圆心为,
半径为,
于是,所求圆的方程为.
(2)依题意,设抛物线的方程为,
∵椭圆的右焦点为,∴,
∴抛物线的方程为.
①当直线的斜率不存在时,直线为轴与抛物线相切,符合题意.
②当直线的斜率为0时,直线为与抛物线的对称轴平行,符合题意.
③当直线的斜率存在且不为0时,设直线的方程为,
将代入,得,
由,得,
∴直线方程为,
综上所述,直线的方程为, 或.
练习册系列答案
相关题目