题目内容
【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
【答案】
(1)解:由A中的不等式变形得:3﹣1<3x<32,
解得:﹣1<x<2,即A=(﹣1,2),
由B中的不等式变形得:log2x>0=log21,得到x>1,
∴B=(1,+∞),
则A∩B=(1,2);A∪B=(﹣1,+∞);
(2)解:∵A=(﹣1,2),B=(1,+∞),A﹣B={x|x∈A且xB},
∴A﹣B=(﹣1,1];B﹣A=[2,+∞)
【解析】(1)求出A与B中其他不等式的解集确定出A与B,找出两集合的交集,并集即可;(2)根据A﹣B的定义,求出A﹣B与B﹣A即可.
【题目】如图所示,空间几何体中,四边形是梯形,四边形是矩形,且平面平面, , , 是线段上的动点.
(1)求证: ;
(2)试确定点的位置,使平面,并说明理由;
(3)在(2)的条件下,求空间几何体的体积.
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.