题目内容
已知f(x)与g(x)是定义在R上的非奇非偶函数,且h(x)=f(x)g(x)是定义在R上的偶函数,试写出满足条件的一组函数:f(x)= ,g(x)= (只要写出满足条件的一组即可)
x+1,x-1
已知f(x)与g(x)是定义在R上的非奇非偶函数,且h(x)=f(x)g(x)是定义在R上的偶函数,可以令f(x)=x+1,g(x)=x-1,从而求解;
解:∵f(x)与g(x)是定义在R上的非奇非偶函数,且h(x)=f(x)g(x)是定义在R上的偶函数,
∴可以找f(x)=x+1,g(x)=x-1,构成平方差公式,
h(x)=f(x)g(x)=x2-1,h(x)为偶函数,
故答案为:f(x)=x+1,g(x)=x-1;(答案不唯一)
解:∵f(x)与g(x)是定义在R上的非奇非偶函数,且h(x)=f(x)g(x)是定义在R上的偶函数,
∴可以找f(x)=x+1,g(x)=x-1,构成平方差公式,
h(x)=f(x)g(x)=x2-1,h(x)为偶函数,
故答案为:f(x)=x+1,g(x)=x-1;(答案不唯一)
练习册系列答案
相关题目