题目内容
设函数。
(Ⅰ)若且对任意实数均有成立,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.
(Ⅰ)若且对任意实数均有成立,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围.
(Ⅰ),(Ⅱ)或
试题分析:(Ⅰ)根据得出a,b关系,再在定义域上恒成立,可得a,b的值,从而得出表达式.
(Ⅱ)由(Ⅰ)可推出表达式,又为单调函数,利用二次函数性质求得实数的取值范围.
试题解析:(Ⅰ)恒成立,
知
从而 .(6分)
(Ⅱ)由(1)可知,
由于是单调函数,
知 .(12分)
练习册系列答案
相关题目