题目内容

设函数是定义域为的奇函数.
(Ⅰ)求的值,判断并证明当时,函数上的单调性;
(Ⅱ)已知,函数,求的值域;
(Ⅲ)已知,若对于时恒成立.请求出最大的整数
(Ⅰ)在R上为增函数;(Ⅱ);(Ⅲ)的最大整数为10.

试题分析:(Ⅰ)由奇函数的性质,由单调性的定义证明 在R上是增函数;
(Ⅱ)由可得,由换元法令,将函数转化为二次函数求最值;(Ⅲ)时,原式可化为,令,由分离参数的方法得到,进而得到的取值范围.本题中用到换元法,换元之后应特别注意变元的取值范围.
试题解析:(Ⅰ)是定义域为R上的奇函数,,得
,即是R上的奇函数 2分
,则
在R上为增函数 5分
(Ⅱ),即(舍去)
,令
由(1)可知该函数在区间上为增函数,则
           8分
时,;当时,
所以的值域为            10分
(Ⅲ)由题意,即,在时恒成立
,则
恒成立
即为恒成立          13分
恒成立,当时,
,则的最大整数为10           16分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网