题目内容
【题目】在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求直线和圆的普通方程;
(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.
【答案】(1),;(2)
【解析】分析:(1)用代入法消参数可得直线的普通方程,由公式可化极坐标方程为直角坐标方程;
(2)把直线的参数方程代入曲线的直角坐标方程,其中参数的绝对值表示直线上对应点到的距离,因此有,,直接由韦达定理可得,注意到直线与圆相交,因此判别式>0,这样可得满足的不等关系,由此可求得的取值范围.
详解:(1)直线的参数方程为,
普通方程为,
将代入圆的极坐标方程中,
可得圆的普通方程为,
(2)解:直线的参数方程为代入圆的方程为 可得:
(*),
且由题意 ,,
.
因为方程(*)有两个不同的实根,所以,
即,
又,
所以.
因为,所以
所以.
【题目】关于函数,有下列结论:
①的定义域为(-1, 1); ②的值域为(, );
③的图象关于原点成中心对称; ④在其定义域上是减函数;
⑤对的定义城中任意都有.
其中正确的结论序号为__________.
【题目】某企业为打入国际市场,决定从,两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目类别 | 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 |
产品 | 20 | 10 | 200 | |
产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计.另外,年销售件产品时需上交万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产,两种产品的年利润、与生产相应产品的件数之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.