题目内容
20.(1)已知a,b,c>0且a+b+c=1,求证:$\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}≤3\sqrt{2}$;(2)已知n∈N*,求证:$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{n}}}≤2\sqrt{n}$.
分析 (1)运用构造向量法,设$\overrightarrow{m}$=(1,1,1),$\overrightarrow{n}$=($\sqrt{3a+1}$,$\sqrt{3b+1}$,$\sqrt{3c+1}$),由|$\overrightarrow{m}$•$\overrightarrow{n}$|≤|$\overrightarrow{m}$|•|$\overrightarrow{n}$|,计算即可得证;
(2)运用数学归纳法证明,注意解题步骤,当n=k+1时,要证的目标是$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}<2\sqrt{k+1}$,当代入归纳假设后,就是要证明:$2\sqrt{k}+\frac{1}{{\sqrt{k+1}}}<2\sqrt{k+1}$.
解答 证明:(1)设$\overrightarrow{m}$=(1,1,1),$\overrightarrow{n}$=($\sqrt{3a+1}$,$\sqrt{3b+1}$,$\sqrt{3c+1}$),
则|$\overrightarrow{m}$|=$\sqrt{3}$,|$\overrightarrow{n}$|=$\sqrt{3(a+b+c)+3}$=$\sqrt{6}$,
由|$\overrightarrow{m}$•$\overrightarrow{n}$|≤|$\overrightarrow{m}$|•|$\overrightarrow{n}$|,
可得$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$≤3$\sqrt{2}$;
(2)①当n=1时,左边=1,右边=2.
左边<右边,不等式成立.
②假设n=k时,不等式成立,即$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}<2\sqrt{k}$.
那么当n=k+1时,$1+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{k}}}+\frac{1}{{\sqrt{k+1}}}$$<2\sqrt{k}+\frac{1}{{\sqrt{k+1}}}=\frac{{2\sqrt{k}\sqrt{k+1}+1}}{{\sqrt{k+1}}}$
$<\frac{{k+({k+1})+1}}{{\sqrt{k+1}}}=\frac{{2({k+1})}}{{\sqrt{k+1}}}=2\sqrt{k+1}$,
这就是说,当n=k+1时,不等式成立.
由①、②可知,原不等式对任意自然数n都成立.
点评 本题考查不等式的证明,考查构造向量法和数学归纳法的证明,属于中档题.
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.
A. | y平均增加2个单位 | B. | y平均减少3个单位 | ||
C. | y平均减少2个单位 | D. | y平均增加3个单位 |
A. | $\frac{1}{40}$ | B. | $\frac{1}{121}$ | C. | $\frac{1}{364}$ | D. | $\frac{1}{1093}$ |