题目内容

8.如图,E为矩形ABCD所在平面外一点,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)G为矩形ABCD对角线的交点,求三棱锥C-BGF的体积.

分析 (Ⅰ)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论.
(Ⅱ)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积.

解答 (Ⅰ)证明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF
∴AE⊥平面BCE.
(Ⅱ)解:∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE,
∴FG⊥平面BCE,∴FG⊥平面BCF,
∵G是AC中点,∴F是CE中点,且FG=$\frac{1}{2}$AE=1,
∵BF⊥平面ACE,∴BF⊥CE.
∴Rt△BCE中,BF=CF=$\frac{1}{2}$CE=$\sqrt{2}$.
∴S△CFB=$\frac{1}{2}•\sqrt{2}•\sqrt{2}$=1
∴VC-BFG=VG-BCF=$\frac{1}{3}$S△CFB•FG=$\frac{1}{3}$.

点评 本题考查线面垂直的证明方法,利用等体积法求三棱锥的体积,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网