题目内容
【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2 (Ⅰ)如果函数g(x)的单调递减区间为(﹣ ,1),求函数g(x)的解析式;
(Ⅱ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
【答案】解:(Ⅰ)g′(x)=3x2+2ax﹣1 由题意3x2+2ax﹣1<0的解集是(﹣ ,1),即3x2+2ax﹣1=0的两根分别是﹣ ,1
将x=1或﹣ 代入方程3x2+2ax﹣1=0得a=﹣1,
∴g(x)=x3﹣x2﹣x+2
(Ⅱ)由题意知,2xlnx≤3x2+2ax﹣1+2在x∈(0,+∞)上恒成立
即a≥lnx﹣ ,
设h(x)=lnx﹣ ,则
令h′(x)=0,得x=1,x=﹣ (舍),当0<x<1时,h′(x)>0;当x>1时,h′(x)<0
∴当x=1时,h(x)取得最大值,h(x)max=﹣2,.
∴a≥﹣2,即a的取值范围是[﹣2,+∞)
【解析】(Ⅰ)根据函数的单调区间可知﹣ ,1是导函数所对应方程的两个根,从而可求出a的值;(Ⅱ)2xlnx≤3x2+2ax﹣1+2在x∈(0,+∞)上恒成立将a分离可得a≥lnx﹣ ,设h(x)=lnx﹣ ,利用导数研究h(x)的最大值,可求出a的取值范围.
【考点精析】掌握基本求导法则和利用导数研究函数的单调性是解答本题的根本,需要知道若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目